

MATHEMATICS STANDARD LEVEL PAPER 1

Wednesday 7 May 2008 (afternoon)

1 hour 30 minutes

	C	andi	aate	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [*Maximum mark: 7*]

A box contains 100 cards. Each card has a number between one and six written on it. The following table shows the frequencies for each number.

Number	1	2	3	4	5	6
Frequency	26	10	20	k	29	11

(a)	Calc	ulate the value of k .	[2 marks]
(b)	Find		
	(i)	the median;	
	(ii)	the interquartile range.	[5 marks]

[Maximum mark: 6] 2.

The following diagram shows part of the graph of f, where $f(x) = x^2 - x - 2$.

Find both *x*-intercepts. (a)

[4 marks]

(b) Find the *x*-coordinate of the vertex. [2 marks]

3. [Maximum mark: 6]

Let
$$\mathbf{M} = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$
.

(a) Write down the determinant of M. [1 mark]

(b) Write down M^{-1} . [2 marks]

(c) Hence solve $M \binom{x}{y} = \binom{4}{8}$. [3 marks]

.....

.....

.....

.....

.....

- **4.** [Maximum mark: 6]
 - (a) Given that $\cos A = \frac{1}{3}$ and $0 \le A \le \frac{\pi}{2}$, find $\cos 2A$.

[3 marks]

(b) Given that $\sin B = \frac{2}{3}$ and $\frac{\pi}{2} \le B \le \pi$, find $\cos B$.

[3 marks]

.....

.....

.....

.....

.....

5. [Maximum mark: 6]

Part of the graph of a function f is shown in the diagram below.

(a) On the same diagram sketch the graph of y = -f(x).

[2 marks]

- (b) Let g(x) = f(x+3).
 - (i) Find g(-3).
 - (ii) Describe **fully** the transformation that maps the graph of f to the graph of g.

[4 marks]

٠.																																		•	•	•		٠	
				•					•					 								•						•	 •	•	•				•				
٠.	•	•	 					•		 ٠	•	•	•	 	٠				•	•			•	•	•	 •	•					-	 •	•	•	•		٠	
	-		 											 					•	•	 			•	•		•					-		-	•	•	 •		

6. [Maximum mark: 7]

There are 20 students in a classroom. Each student plays only one sport. The table below gives their sport and gender.

	Football	Tennis	Hockey
Female	5	3	3
Male	4	2	3

- (a) One student is selected at random.
 - (i) Calculate the probability that the student is a male or is a tennis player.
 - (ii) Given that the student selected is female, calculate the probability that the student does not play football.

[4 marks]

(b)	Two students are selected at random.	Calculate the probability that neither
	student plays football.	

[3 marks]

			 •				 •			 •										 																						
																																					•	•	•	 •	•	•
																																					٠	•		 	٠	٠
	•	 ٠				٠		٠		 •		•						•		 		٠		٠			٠		٠	•			٠		•			•		 	٠	٠
٠.																				 	•			•			•							•	•			•	•	 		
٠.		 •	•	•	 •	•	 •	•	•		•	•	•	•	 •	•	•	•	•			•	•	•	•	 •	•		•	•		•	•	•	•	 •				 		

7. [Maximum mark: 7]

Let
$$\int_{1}^{5} 3f(x) dx = 12$$
.

(a) Show that $\int_{5}^{1} f(x) dx = -4$.

[2 marks]

(b) Find the value of $\int_1^2 (x+f(x)) dx + \int_2^5 (x+f(x)) dx$.

[5 marks]

.....

.....

.....

......

.....

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 13]

Consider the points A(1, 5, 4), B(3, 1, 2) and D(3, k, 2), with (AD) perpendicular to (AB).

- (a) Find
 - (i) \overrightarrow{AB} ;
 - (ii) \overrightarrow{AD} , giving your answer in terms of k.

[3 marks]

(b) Show that k = 7.

[3 marks]

The point C is such that $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AD}$.

(c) Find the position vector of C.

[4 marks]

(d) Find cos ABC.

[3 marks]

9. [Maximum mark: 14]

Let $f: x \mapsto \sin^3 x$.

- (a) (i) Write down the range of the function f.
 - (ii) Consider f(x) = 1, $0 \le x \le 2\pi$. Write down the number of solutions to this equation. Justify your answer.

[5 marks]

- (b) Find f'(x), giving your answer in the form $a \sin^p x \cos^q x$ where $a, p, q \in \mathbb{Z}$. [2 marks]
- (c) Let $g(x) = \sqrt{3} \sin x (\cos x)^{\frac{1}{2}}$ for $0 \le x \le \frac{\pi}{2}$. Find the volume generated when the curve of g is revolved through 2π about the x-axis. [7 marks]

10. [Maximum mark: 18]

The following diagram shows a semicircle centre O, diameter [AB], with radius 2. Let P be a point on the circumference, with $P\hat{O}B = \theta$ radians.

(a) Find the area of the triangle OPB, in terms of θ .

[2 marks]

(b) Explain why the area of triangle OPA is the same as the area triangle OPB.

[3 marks]

Let S be the total area of the two segments shaded in the diagram below.

(c) Show that $S = 2(\pi - 2\sin\theta)$.

[3 marks]

(d) Find the value of θ when S is a local minimum, justifying that it is a minimum.

[8 marks]

(e) Find a value of θ for which S has its greatest value.

[2 marks]